Abstract
ABSTRACTReference materials (RM)-assisted Rayleigh-Gans-Debye approximation (rm-RGDA) has been developed and used to in situ determine the size and thickness of the adlayer on the particles in solution. The particle size determined by rm-RGDA is quite close to that measured by electron microscopy but significantly smaller than that measured by DLS. The BSA adlayer absorbed on PS50, PS100 and SiO2 NPs is 3.3, 0.9 and 1.2 nm, respectively, and close to those observed by SEM, which is 4.6, 1.3 and 3.8 nm, respectively. The FTIR analysis results show that the BSA absorbed on larger particles or hydroxyl-abundant surface, e.g. PS100 and SiO2 NPs can lose its secondary structure, e.g. α-helix, to a great extent and that absorbed on a more curve surface, e.g. smaller PS50 particles can largely preserve its secondary structure as its free state. The measurement results show the curvature of the NPs is closely related to the structure change of the adsorbed protein. This method provide a facile and new approach to measure the size and its adlayer change of the hybrid and core-shell structured nanoparticles in a wide range of wavelength.SIGNIFICANCEQuantitative study on the adsorption of the protein on colloidal nanoparticles is an important approach to understand the biophysical effect, compared with other ex situ methods such as TEM and SEM, where the specimen are undergone pre-processing and no longer the original state in measurement. It is, therefore, a big challenge. In order to cope with this challenge, UV-vis based RGDA has been developed and applied to in situ measure the size of the dispersed colloidal nanoparticles and their protein adlayer thickness, where the protein adlayer thickness on the colloidal nanoparticles can be easily determined. We believe this method provide a facile and sensitive way to in situ measure the dimension change of hybrid colloidal nanoparticles.
Publisher
Cold Spring Harbor Laboratory