Endopeptidase regulation as a novel function of the Zur-dependent zinc starvation response

Author:

Murphy Shannon G.,Alvarez Laura,Adams Myfanwy C.,Liu Shuning,Chappie Joshua S.,Cava Felipe,Dörr Tobias

Abstract

AbstractThe cell wall is a strong, yet flexible, meshwork of peptidoglycan (PG) that gives a bacterium structural integrity. To accommodate a growing cell, the wall is remodeled by both PG synthesis and degradation.Vibrio choleraeencodes a group of three nearly identical zinc-dependent endopeptidases (EPs) that hydrolyze PG to facilitate cell growth. Two of these (shyAandshyC) are housekeeping genes and form a synthetic lethal pair, while the third (shyB) is not expressed under standard laboratory conditions. To investigate the role of ShyB, we conducted a transposon screen to identify mutations that activateshyBtranscription. We found thatshyBis induced as part of the Zur-mediated zinc starvation response, a mode of regulation not previously reported for cell wall lytic enzymes.In vivo, ShyB alone was sufficient to sustain cell growth in low-zinc environments.In vitro, ShyB retained its D,D-endopeptidase activity against purified sacculi in the presence of the metal chelator EDTA at a concentration that inhibits ShyA and ShyC. This suggests that ShyB can substitute for the other EPs during zinc starvation, a condition that pathogens encounter while infecting a human host. Our survey of transcriptomic data from diverse bacteria identified other candidate Zur-regulated endopeptidases, suggesting that this adaptation to zinc starvation is conserved in other Gram-negative bacteria.ImportanceThe human host sequesters zinc and other essential metals in order to restrict growth of potentially harmful bacteria. In response, invading bacteria express a set of genes enabling them to cope with zinc starvation. InVibrio cholerae, the causative agent of the diarrheal disease cholera, we have identified a novel member of this zinc starvation response: a cell wall hydrolase that retains function in low-zinc environments and is conditionally essential for cell growth. Other human pathogens contain homologs that appear to be under similar regulatory control. These findings are significant because they represent, to our knowledge, the first evidence that zinc homeostasis influences cell wall turnover. Anti-infective therapies commonly target the bacterial cell wall and, therefore, an improved understanding of how the cell wall adapts to host-induced zinc starvation could lead to new antibiotic development. Such therapeutic interventions are required to combat the rising threat of drug resistant infections.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3