Abstract
ABSTRACTStructural and molecular myelination deficits represent early pathological features of Huntington disease (HD). Recent evidence from germ-free (GF) animals suggests a role for microbiota-gut-brain bidirectional communication in the regulation of myelination. In this study, we aimed to investigate the impact of microbiota on myelin plasticity and oligodendroglial population dynamics in the mixed-sex BACHD mouse model of HD. Ultrastructural analysis of myelin in the corpus callosum revealed alterations of myelin thickness in BACHD GF compared to specific-pathogen free (SPF) mice, whereas no differences were observed between wild-type (WT) groups. In contrast, myelin compaction was altered in all groups when compared to WT SPF animals. Levels of myelin-related proteins were generally reduced, and the number of mature oligodendrocytes was decreased in the prefrontal cortex under GF compared to SPF conditions, regardless of genotype. Minor differences in commensal bacteria at the family and genera levels were found in the gut microbiota of BACHD and WT animals housed in standard living conditions. Our findings indicate complex effects of a germ-free status on myelin-related characteristics, and highlight the adaptive properties of myelination as a result of environmental manipulation.
Publisher
Cold Spring Harbor Laboratory
Reference60 articles.
1. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease;Nature genetics,1993
2. Behavioral Phenotyping of Transgenic and Knockout Mice: Practical Concerns and Potential Pitfalls
3. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice
4. Myelin basic protein: a multifunctional protein;Cellular and molecular life sciences: CMLS,2006
5. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health?;Neuroscience letters,2016
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献