Gut-associated bacteria invade the midgut epithelium of Aedes aegypti and stimulate innate immunity and suppress Zika virus infection in cells

Author:

Hegde ShivanandORCID,Voronin Denis,Casas-Sanchez Aitor,Saldaña Miguel A.,Heinz EvaORCID,Acosta-Serrano AlvaroORCID,Popov Vsevolod L.,Chopra Ashok K.,Hughes Grant L.ORCID

Abstract

AbstractMicrobiota within mosquitoes influence nutrition, immunity, fecundity, and the capacity to transmit pathogens. Despite their importance, we have a limited understanding of host-microbiota interactions, especially at the cellular level. It is evident bacterial symbionts that are localized within the midgut also infect other organs within the mosquito; however, the route these symbionts take to colonize other tissues is unknown. Here, utilizing the gentamicin protection assay, we showed that the bacterial symbionts Cedecea and Serratia have the capacity to invade and reside intracellularly within mosquito cells. Symbiotic bacteria were found within a vacuole and bacterial replication was observed in mosquito cell by transmission electron microscopy, indicating bacteria were adapted to the intracellular milieu. Using gene silencing, we determined that bacteria exploited host factors, including actin and integrin receptors, to actively invade mosquito cells. As microbiota can affect pathogens within mosquitoes, we examined the influence of intracellular symbionts on Zika virus (ZIKV) infection. Mosquito cells harbouring intracellular bacteria had significantly less ZIKV compared to uninfected cells or cells exposed to non-invasive bacteria. Intracellular bacteria were observed to substantially upregulate the Toll and IMD innate immune pathways, providing a possible mechanism mediating these anti-viral effects. Examining mono-axenically infected mosquitoes using transmission electron and fluorescent microscopy revealed that bacteria occupied an intracellular niche in vivo. Our results provided evidence that bacteria that associate with the midgut of mosquitoes have intracellular lifestyles which likely have implications for mosquito biology and pathogen infection. This study expands our understanding of host-microbiota interactions in mosquitoes, which is important as symbiont microbes are being exploited for vector control strategies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3