Different processes shape prokaryotic and picoeukaryotic assemblages in the sunlit ocean microbiome

Author:

Logares RamiroORCID,Deutschmann Ina M.,Giner Caterina. R.ORCID,Krabberød Anders K.ORCID,Schmidt Thomas S. B.,Rubinat-Ripoll LauraORCID,Mestre MireiaORCID,Salazar GuillemORCID,Ruiz-González ClaraORCID,Sebastián Marta,de Vargas ColombanORCID,Acinas Silvia G.ORCID,Duarte Carlos M.,Gasol Josep M.ORCID,Massana RamonORCID

Abstract

ABSTRACTThe smallest members of the sunlit-ocean microbiome (prokaryotes and picoeukaryotes) participate in a plethora of ecosystem functions with planetary-scale effects. Understanding the processes determining the spatial turnover of this assemblage can help us better comprehend the links between microbiome species composition and ecosystem function. Ecological theory predicts thatselection,dispersalanddriftare main drivers of species distributions, yet, the relative quantitative importance of these ecological processes in structuring the surface-ocean microbiome is barely known. Here we quantified the role of selection, dispersal and drift in structuring surface-ocean prokaryotic and picoeukaryotic assemblages by using community DNA-sequence data collected during the global Malaspina expedition. We found that dispersal limitation was the dominant process structuring picoeukaryotic communities, while a balanced combination of dispersal limitation, selection and drift shaped prokaryotic counterparts. Subsequently, we determined the agents exerting abiotic selection as well as the spatial patterns emerging from the action of different ecological processes. We found that selection exerted via temperature had a strong influence on the structure of prokaryotic communities, particularly on species co-occurrences, a pattern not observed among communities of picoeukaryotes. Other measured abiotic variables had limited selective effects on microbiome structure. Picoeukaryotes presented a higher differentiation between neighbouring communities and a higher distance-decay when compared to prokaryotes, agreeing with their higher dispersal limitation. Finally, drift seemed to have a limited role in structuring the sunlit-ocean microbiome. The different predominance of ecological processes acting on particular subsets of the ocean microbiome suggests uneven responses to environmental change.SIGNIFICANCE STATEMENTThe global ocean contains one of the largest microbiomes on Earth and changes on its structure can impact the functioning of the biosphere. Yet, we are far from understanding the mechanisms that structure the global ocean microbiome, that is, the relative importance of environmentalselection,dispersaland random events (drift). We evaluated the role of these processes at the global scale, based on data derived from a circumglobal expedition and found that these ecological processes act differently on prokaryotes and picoeukaryotes, two of the main components of the ocean microbiome. Our work represents a significant contribution to understand the assembly of marine microbial communities, providing also insights on the links between ecological mechanisms, microbiome structure and ecosystem function.

Publisher

Cold Spring Harbor Laboratory

Reference120 articles.

1. Ocean Science: The power of plankton

2. The Microbial Engines That Drive Earth's Biogeochemical Cycles

3. Pedrós-Alió C , Acinas SG , Logares R , & Massana R (2018) Marine microbial diversity as seen by high throughput sequencing. Microbial Ecology of the Oceans, eds Gasol JM & Kirchman DL (Wiley-Blackwell, Hoboken, New Jersey), p 592.

4. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes

5. Eukaryotic Picoplankton in Surface Oceans

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3