Species limits in butterflies (Lepidoptera: Nymphalidae): Reconciling classical taxonomy with the multispecies coalescent

Author:

Matos-Maraví PávelORCID,Wahlberg NiklasORCID,Antonelli AlexandreORCID,Penz Carla M.ORCID

Abstract

AbstractSpecies delimitation is at the core of biological sciences. During the last decade, molecular-based approaches have advanced the field by providing additional sources of evidence to classical, morphology-based taxonomy. However, taxonomy has not yet fully embraced molecular species delimitation beyond threshold-based, single-gene approaches, and taxonomic knowledge is not commonly integrated to multi-locus species delimitation models. Here we aim to bridge empirical data (taxonomic and genetic) with recently developed coalescent-based species delimitation approaches. We use the multispecies coalescent model as implemented in two Bayesian methods (DISSECT/STACEY and BP&P) to infer species hypotheses. In both cases, we account for phylogenetic uncertainty (by not using any guide tree) and taxonomic uncertainty (by measuring the impact of using or not a priori taxonomic assignment to specimens). We focus on an entire Neotropical tribe of butterflies, the Haeterini (Nymphalidae: Satyrinae). We contrast divergent taxonomic opinion—splitting, lumping and misclassifying species—in the light of different phenotypic classifications proposed to date. Our results provide a solid background for the recognition of 22 species. The synergistic approach presented here overcomes limitations in both traditional taxonomy (e.g. by recognizing cryptic species) and molecular-based methods (e.g. by recognizing structured populations, and not raise them to species). Our framework provides a step forward towards standardization and increasing reproducibility of species delimitations.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. An engine for global plant diversity: Highest evolutionary turnover and emigration in the American tropics;Frontiers in Genetics,2015

2. Marginal Likelihood Estimate Comparisons to Obtain Optimal Species Delimitations in Silene sect. Cryptoneurae (Caryophyllaceae)

3. BEAST 2: a software platform for Bayesian evolutionary analysis;PLoS Computational Biology,2014

4. DensiTree: making sense of sets of phylogenetic trees

5. Embracing heterogeneity: building the Tree of Life and the future of phylogenomics;PeerJ PrePrints,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3