Human Sensitivity to Perturbations Constrained by a Model of the Natural Image Manifold

Author:

Fruend Ingo,Stalker Elee

Abstract

Humans are remarkably well tuned to the statistical properties of natural images. However, quantitative characterization of processing within the domain of natural images has been difficult because most parametric manipulations of a natural image make that image appear less natural. We used generative adversarial networks (GANs) to constrain parametric manipulations to remain within an approximation of the manifold of natural images. In the first experiment, 7 observers decided which one of two synthetic perturbed images matched a synthetic unperturbed comparison image. Observers were significantly more sensitive to perturbations that were constrained to an approximate manifold of natural images than they were to perturbations applied directly in pixel space. Trial by trial errors were consistent with the idea that these perturbations disrupt configural aspects of visual structure used in image segmentation. In a second experiment, 5 observers discriminated paths along the image manifold as recovered by the GAN. Observers were remarkably good at this task, confirming that observers were tuned to fairly detailed properties of an approximate manifold of natural images. We conclude that human tuning to natural images is more general than detecting deviations from natural appearance, and that humans have, to some extent, access to detailed interrelations between natural images.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3