A cell surface arabinogalactan-peptide influences root hair cell fate

Author:

Borassi Cecilia,Dorosz Javier Gloazzo,Ricardi Martiniano M.,Pol Fachin Laercio,Sardoy Mariana Carignani,Marzol Eliana,Mangano Silvina,Rodríguez Garcia Diana Rosa,Martínez Pacheco Javier,del Carmen Rondón Guerrero Yossmayer,Velasquez Silvia M.,Villavicencio Bianca,Ciancia Marina,Seifert Georg,Verli Hugo,Estevez José M.

Abstract

SummaryRoot hairs (RHs) develop from specialized epidermal cells called trichoblasts, whereas epidermal cells that lack RHs are known as atrichoblasts. The mechanism controlling root epidermal cell fate is only partially understood. Root epidermis cell fate is regulated by a transcription factor complex that promotes the expression of the homeodomain protein GLABRA 2 (GL2), which blocks RH development by inhibiting ROOT HAIR DEFECTIVE 6 (RHD6). Suppression of GL2 expression activates RHD6, a series of downstream TFs including ROOT HAIR DEFECTIVE 6 LIKE-4 (RSL4 [Yi et al. 2010]) and their target genes, and causes epidermal cells to develop into RHs. Brassinosteroids (BRs) influence root epidermis cell fate. In the absence of BRs, phosphorylated BIN2 (a Type-II GSK3-like kinase) inhibits a protein complex that directly downregulates GL2 [Chen et al. 2014]. Here, we show that the genetic and pharmacological perturbation of the arabinogalactan peptide (AG) AGP21 inArabidopsis thaliana, triggers aberrant RH development, similar to that observed in plants with defective BR signaling. We reveal that anO-glycosylated AGP21 peptide, which is positively regulated by BZR1, a transcription factor activated by BR signaling, affects RH cell fate by alteringGL2expression in a BIN2-dependent manner. These results suggest that perturbation of a cell surface AGP disrupts BR responses and inhibits the downstream effect of BIN2 on the RH repressor GL2 in root epidermal cells. In addition, AGP21 also acts in a BR-independent, AGP-dependent mode that together with BIN2 signalling cascade controls RH cell fate.SignificanceIn the plantArabidopsis thaliana, the root epidermis forms in an alternating pattern atrichoblasts with trichoblast cells that end up developing root hairs (RHs). Atrichoblast cell fate is directly promoted by the transcription factor GLABRA2 (GL2) while the lack of GL2 allows RH formation. The loss of AGP21 peptide triggers an abnormal RH cell fate in two contiguous cells in a similar manner as brassinosteroid (BRs) mutants. In the absence of BR signaling, BIN2 (a GSK3 like-kinase) in a phosphorylated state, downregulate GL2 expression to trigger RH cell fate. The absence of AGP21 is able to repressGL2expression and activates the expression of RSL4 and EXP7 root hair proteins.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3