A simple CPG-based model to generate human hip moment pattern in walking by generating stiffness and equilibrium point trajectories

Author:

Bahramian Alireza,Towhidkhah Farzad,Jafari Sajad

Abstract

AbstractEquilibrium point hypothesis (its developed version named as referent control theory) presents a theory about how the central nerves system (CNS) generates human movements. On the other hand, it has been shown that nerves circuits known as central pattern generators (CPG) likely produce motor commands to the muscles in rhythmic motions. In the present study, we designed a bio-inspired walking model, by coupling double pendulum to CPGs that produces equilibrium and stiffness trajectories as reciprocal and co-activation commands. As a basic model, it is has been shown that this model can regenerate pattern of a hip moment in the swing phase by high correlation (ρ = 0.970) with experimental data. Moreover, it has been reported that a global electromyography (EMG) minima occurs in the mid-swing phase when the hip is more flexed in comparison with the other leg. Our model showed that equilibrium and actual hip angle trajectories match each other in mid-swing, similar to the mentioned posture, that is consistent with previous findings. Such a model can be used in active exoskeletons and prosthesis to make proper active stiffness and torque.

Publisher

Cold Spring Harbor Laboratory

Reference69 articles.

1. The origin and use of positional frames of reference in motor control;J Behavioral brain sciences,1995

2. A. G. Feldman , “Origin and advances of the equilibrium-point hypothesis,” in Progress in motor control: Springer, 2009, pp. 637–643.

3. Central pattern generation of locomotion: a review of the evidence;J Physical therapy,2002

4. Neural control of locomotion; Part 1: The central pattern generator from cats to humans;J Gait & posture,1998

5. Functional tuning of the nervous system with control of movement or maintenance of a steady posture-II. Controllable parameters of the muscle;J Biofizika,1966

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3