Characteristics of the mitochondrial and cellular uptake of MPP+, as probed by the fluorescent mimic, 4′I-MPP+

Author:

Mapa Mapa S.T.,Le Viet Q.,Wimalasena Kandatege

Abstract

AbstractThe discovery that 1-methyl-4-phenylpyridinium (MPP+) selectively destroys dopaminergic neurons and causes Parkinson’s disease (PD) symptoms in mammals has strengthened the environmental hypothesis of PD. The current model for the dopaminergic toxicity of MPP+ is centered on the uptake into dopaminergic neurons, accumulation into the mitochondria, inhibition of the complex-I leading to ATP depletion, increased reactive oxygen species (ROS) production, and apoptotic cell death. However, some aspects of this mechanism and the details of the cellular and mitochondrial accumulation of MPP+ are still poorly understood. The aim of this study was to characterize a structural and functional MPP+ mimic which is suitable to study the cellular distribution and mitochondrial uptake of MPP+ in live cells and use it to identify the molecular details of these processes to advance the understanding of the mechanism of the selective dopaminergic toxicity of MPP+. Here we report the characterization of the fluorescent MPP+ derivative, 1-methyl-4-(4’-iodophenyl)pyridinium (4’I-MPP+), as a suitable candidate for this purpose. Using this novel probe, we show that cytosolic/mitochondrial Ca2+ play a critical role through sodium-calcium exchanger (NCX) in the mitochondrial and cellular accumulation of MPP+ suggesting for the first time that MPP+ and related mitochondrial toxins may also exert their toxic effects through the perturbation of Ca2+ homeostasis in dopaminergic cells. We also found that the specific mitochondrial NCX (mNCX) inhibitors protect dopaminergic cells from the MPP+ and 4’I-MPP+ toxicity, most likely through the inhibition of the mitochondrial uptake, which could potentially be exploited for the development of pharmacological agents to protect the central nervous system (CNS) dopaminergic neurons from PD-causing environmental toxins.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3