Unspecific binding but specific disruption of the group I intron by the StpA chaperone

Author:

Reinharz VladimirORCID,Tlusty TsviORCID

Abstract

Chaperone proteins — the most disordered among all protein groups — help RNAs fold into their functional structure by destabilizing misfolded configurations or stabilizing the functional ones. But disentangling the mechanism underlying RNA chaperoning is challenging, mostly due to inherent disorder of the chaperones and the transient nature of their interactions with RNA. In particular, it is unclear how specific the interactions are and what role is played by amino acid charge and polarity patterns. Here, we address these questions in the RNA chaperone StpA. By adapting direct coupling analysis (DCA) to treat in tandem sequences written in two alphabets, nucleotides and amino acids, we could analyze StpA-RNA interactions and identify a two-pronged mechanism: StpA disrupts specific positions in the group I intron while globally and loosely binding to the entire structure. Moreover, the interaction is governed by the charge pattern: negatively charged regions in the destabilizing StpA N-terminal affect a few specific positions in the RNA, located in stems and in the pseudoknot. In contrast, positive regions in the C-terminal contain strongly coupled amino acids that promote non-specific or weakly-specific binding to the RNA. The present study opens new avenues to examine the functions of disordered proteins and to design disruptive proteins based on their charge patterns.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3