Macromolecule Translocation in a Nanopore: Center of Mass Drift–Diffusion over an Entropic Barrier

Author:

Dell Z. E.,Muthukumar M.

Abstract

ABSTRACTMany fundamental biological processes involve moving macromolecules across membranes, through nanopores, in a process called translocation. Such motion is necessary for gene expression and regulation, tissue formation, and viral infection. Furthermore, in recent years nanopore technologies have been developed for single molecule detection of biological and synthetic macromolecules, which have been most notably employed in next generation DNA sequencing devices. Many successful theories have been established, which calculate the entropic barrier required to elongate a chain during translocation. However, these theories are at the level of the translocation coordinate (number of forward steps) and thus lack a clear connection to experiments and simulations. Furthermore, the proper diffusion coefficient for such a coordinate is unclear. In order to address these issues, we propose a center of mass (CM) theory for translocation. We start with the entropic barrier approach and show that the translocation coordinate is equivalent to the center of mass of the chain, providing a direct interpretation of previous theoretical studies. We thus recognize that the appropriate dynamics is given by CM diffusion, and calculate the appropriate diffusion constant (Rouse or Zimm) as the chain translocates. We illustrate our theoretical approach with a planar nanopore geometry and calculate some characteristic dynamical predictions. Our main result is the connection between the translocation coordinate and the chain CM, however, we also find that the translocation time is sped up by 1–2 orders of magnitude if hydrodynamic interactions are present. Our approach can be extended to include the details included in previous translocation theories. Most importantly this work provides a direct connection between theoretical approaches and experiments or simulations.SIGNIFICANCEMacromolecule motion through nanopores is critical for many biological processes, and has been recently employed for nucleic acid sequencing. Despite this, direct theoretical understandings of translocation are difficult to evaluate due to the introduction of the translocation coordinate. In this manuscript, we propose a theory for translocation written at the center of mass level of the polymer chain. This theoretical approach is more easily compared to experimental and simulation results, and additionally allows one to accurately account for hydrodynamic interactions on the macromolecule dynamics.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3