Abstract
AbstractFinland provides unique opportunities to investigate population and medical genomics because of its adoption of unified national electronic health records, detailed historical and birth records, and serial population bottlenecks. We assemble a comprehensive view of recent population history (≤100 generations), the timespan during which most rare disease-causing alleles arose, by comparing pairwise haplotype sharing from 43,254 Finns to geographically and linguistically adjacent countries with different population histories, including 16,060 Swedes, Estonians, Russians, and Hungarians. We find much more extensive sharing in Finns, with at least one ≥ 5 cM tract on average between pairs of unrelated individuals. By coupling haplotype sharing with fine-scale birth records from over 25,000 individuals, we find that while haplotype sharing broadly decays with geographical distance, there are pockets of excess haplotype sharing; individuals from northeast Finland share several-fold more of their genome in identity-by-descent (IBD) segments than individuals from southwest regions containing the major cities of Helsinki and Turku. We estimate recent effective population size changes over time across regions of Finland and find significant differences between the Early and Late Settlement Regions as expected; however, our results indicate more continuous gene flow than previously indicated as Finns migrated towards the northernmost Lapland region. Lastly, we show that haplotype sharing is locally enriched among pairs of individuals sharing rare alleles by an order of magnitude, especially among pairs sharing rare disease causing variants. Our work provides a general framework for using haplotype sharing to reconstruct an integrative view of recent population history and gain insight into the evolutionary origins of rare variants contributing to disease.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献