Mammalian pre-mRNA branch site selection by U2 snRNP involves base pairing.

Author:

Wu J,Manley J L

Abstract

SV40 early pre-mRNA is alternatively spliced to produce large T and small t mRNAs by use of different 5'-splice sites and a shared 3'-splice site. The large T splicing pathway uses multiple lariat branch sites, whereas small t splicing, constrained by its small intron size, can use only one. We exploited this situation to test the hypothesis that RNA-RNA base pairing between U2 snRNA and the branch site sequence is important in mammalian pre-mRNA splicing by constructing and analyzing several mutations in the small t pre-mRNA branch site (UUCUAAU). All of the mutations resulted in substantial decreases in small t splicing relative to large T. To test whether these effects resulted from decreased base pairing with U2 snRNA, compensatory mutations were introduced at the appropriate positions (nucleotides 34-36) in a cloned human U2 gene. All branch site mutations tested (four separate single base substitutions and two triple mutations) were suppressed (i.e., small t splicing was increased) by the appropriate U2 mutations. These results establish that recognition of the poorly conserved mammalian pre-mRNA branch site sequence by U2 snRNP can involve base-pairing.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Reference54 articles.

1. 5′ cleavage site in eukaryotic pre-mRNA splicing is determined by the overall 5′ splice region, not by the conserved 5′ GU

2. An ordered pathway of snRNP binding during mammalian splicing complex assembly.;EMBO J.,1987

3. U2 as well as U1 small nuclear ribonucleoproteins are involved in premessenger RNA splicing

4. The generality of self-splicing RNA: Relationship to nuclear mRNA splicing

5. Multiple interactions between the splicing substrate and small nuclear ribonucleoproteins in spliceosomes.;Mol. Cell. Biol.,1987

Cited by 299 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3