A semi-parametric multiple imputation method for high-sparse, high-dimensional, compositional data

Author:

Sohn Michael B.ORCID,Scheible Kristin,Gill Steven R.

Abstract

AbstractHigh sparsity (i.e., excessive zeros) in microbiome data, which are high-dimensional and compositional, is unavoidable and can significantly alter analysis results. However, efforts to address this high sparsity have been very limited because, in part, it is impossible to justify the validity of any such methods, as zeros in microbiome data arise from multiple sources (e.g., true absence, stochastic nature of sampling). The most common approach is to treat all zeros as structural zeros (i.e., true absence) or rounded zeros (i.e., undetected due to detection limit). However, this approach can underestimate the mean abundance while overestimating its variance because many zeros can arise from the stochastic nature of sampling and/or functional redundancy (i.e., different microbes can perform the same functions), thus losing power. In this manuscript, we argue that treating all zeros as missing values would not significantly alter analysis results if the proportion of structural zeros is similar for all taxa, and we propose a semi-parametric multiple imputation method for high-sparse, high-dimensional, compositional data. We demonstrate the merits of the proposed method and its beneficial effects on downstream analyses in extensive simulation studies. We reanalyzed a type II diabetes (T2D) dataset to determine differentially abundant species between T2D patients and non-diabetic controls.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3