Abstract
AbstractTime-resolved small-angle X-ray experiments (TR-SAXS) are reported here that capture and quantify a previously unknown rapid collapse of the unfolded oligonucleotide as an early step in G4 folding of hybrid 1 and hybrid 2 telomeric G-quadruplex structures. The rapid collapse, initiated by a pH jump, is characterized by an exponential decrease in the radius of gyration from 20.6 to 12.6 Å. The collapse is monophasic and is complete in less than 600 ms. Additional hand-mixing pH-jump kinetic studies show that slower kinetic steps follow the collapse. The folded and unfolded states at equilibrium were further characterized by SAXS studies and other biophysical tools, to show that G4 unfolding was complete at alkaline pH, but not in LiCl solution as is often claimed. The SAXS Ensemble Optimization Method (EOM) analysis reveals models of the unfolded state as a dynamic ensemble of flexible oligonucleotide chains with a variety of transient hairpin structures. These results suggest a G4 folding pathway in which a rapid collapse, analogous to molten globule formation seen in proteins, is followed by a confined conformational search within the collapsed particle to form the native contacts ultimately found in the stable folded form.
Publisher
Cold Spring Harbor Laboratory