Estimating adequate contact rates and time of Highly Pathogenic Avian Influenza virus introduction into individual United States commercial poultry flocks during the 2022/24 epizootic

Author:

Ssematimba AmosORCID,Malladi Sasidhar,Bonney Peter J.,St. Charles Kaitlyn M.,Hutchinson Holden C.,Schoenbaum Melissa,Marusak Rosemary,Culhane Marie R.,Cardona Carol J.

Abstract

AbstractFollowing confirmation of the first case of the ongoing U.S. HPAI H5N1 epizootic in commercial poultry on February 8, 2022, the virus has continued to devastate the U.S. poultry sector and the pathogen has since managed to cross over to livestock and a few human cases have also been reported. Efficient outbreak management benefits greatly from timely detection and proper identification of the pathways of virus introduction and spread.In this study, using changes in mortality rates as a proxy for HPAI incidence in a layer, broiler and turkey flock, mathematical modeling techniques, specifically the Approximate Bayesian Computation algorithm in conjunction with a stochastic within-flock HPAI transmission model, were used to estimate the time window of pathogen introduction into the flock (TOI) and adequate contact rate (ACR) based on the daily mortality and diagnostic test results. The estimated TOI was then used together with the day when the first positive sample was collected to calculate the most likely time to first positive sample (MTFPS) which reflects the time to HPAI detection in the flock.The estimated joint (i.e., all species combined) median of the MTFPS for different flocks was six days, the joint median most likely ACR was 6.8 newly infected birds per infectious bird per day, the joint medianR0was 13 and the joint median number of test days per flock was two. These results were also grouped by species and by epidemic phase and discussed accordingly.We conclude that findings from this and related studies are beneficial for the different stakeholders in outbreak management and combining TOI analysis with complementary approaches such as phylogenetic analyses is critically important for improved understanding of disease transmission pathways. The estimated parameters can also inform models used for surveillance design, risk analysis, and emergency preparedness.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3