Author:
Cointry Virginia,Ródenas Reyes,Morellet Nelly,Cotelle Valérie,Neveu Julie,Vert Grégory
Abstract
AbstractThe plant IRT1 iron transporter is a plasma membrane protein that takes up iron in root upon iron-limited conditions. Besides its primary metal substrate iron, IRT1 also transports other divalent metals that overaccumulate in plants when soil iron is low andIRT1is highly expressed. We previously reported that the intracellular regulatory loop between transmembrane helices TM4 and TM5, comprising IRT1 residues from 144 to 185, is involved in the post-translational regulation of IRT1 by its non-iron metal substrates. Upon excess of zinc, IRT1 (144-185) undergoes phosphorylation by the CIPK23 kinase followed by its ubiquitination by IDF1 to target IRT1 for vacuolar degradation. This zinc-dependent downregulation of IRT1 requires the presence of four histidine (H) residues in IRT1 loop, that directly bind zinc. However, how selective metal binding is achieved and how this allows downstream regulation to take place is largely unknown. Here, we characterized the metal binding properties and structure of IRT1 loop to better understand the molecular basis of non-iron metal sensing and signaling. Using a combination of circular dichroism and NMR, we demonstrate that zinc and manganese bind to IRT1 loop with nanomolar range affinity, and that metal binding does not trigger structuration of the loop. We prove that zinc and manganese binding is mediated by the four H residues and identify aspartic acid (D) residue D173 as helping in metal coordination and participating to metal sensing and metal-dependent degradation of IRT1 in plants. Altogether, our data provide further evidence of how the regulatory loop of IRT1 senses high cytosolic divalent metal concentrations to regulate metal uptake in plants.
Publisher
Cold Spring Harbor Laboratory