Targeted Polymersomes Enable Enhanced Delivery to Peripheral Nerves Post-Injury

Author:

Trumbull Kayleigh,Fetten Sophia,Montgomery Dru,Marahrens Vanessa,Myers Olivia,Arnold Noah,Twiss JefferyORCID,Larsen JessicaORCID

Abstract

AbstractThe gold standard therapy for peripheral nerve injuries involves surgical repair, which is invasive and leads to major variations in therapeutic outcomes. Because of this, smaller injuries often go untreated. However, alternative, non-invasive routes of administration are currently unviable due to the presence of the blood-nerve barrier (BNB), which prevents passage of small molecules from the blood into the endoneurium and the nerve. This paper demonstrates that ligands on the surface of nanoparticles, called polymersomes, can enable delivery to the nerve through non-invasive intramuscular injections. Polymersomes made from polyethylene glycol (PEG)-b-polylactic acid (PLA) were conjugated with either apolipoprotein E (ApoE) or rabies virus glycoprotein-based peptide, RVG29 (RVG) and loaded with near infrared dye, AlexaFluor647. ApoE was used to target receptors upregulated in post-injury inflammation, while RVG targets neural specific receptors. Untagged, ApoE-tagged, and RVG-tagged polymersomes were injected at 100 mM either intranerve (IN) or intramuscular (IM) into Sprague Dawley rats post sciatic nerve injury. The addition of the ApoE and RVG tags enabled increased AlexaFluor647 fluorescence in the injury site at 1 hour post IN injection compared to the untagged polymersome control. However, only the RVG-tagged polymersomes increased AlexaFluor647 fluorescence after intramuscular injection. Ex vivo analysis of sciatic nerves demonstrated that ApoE-tagged polymersomes enabled the greatest retention of AlexaFluor647 regardless of the injection route. This led us to conclude that using ApoE to target inflammation enabled the greatest retention of polymersome-delivered payloads while RVG to target neural cells more specifically enabled the penetration of polymersome-delivered payloads. Observations were confirmed by calculating area under the curve pharmacokinetic parameters and the use of a two-compartment pharmacokinetic model.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3