Refining Brain Stimulation Therapies: An Active Learning Approach to Personalization

Author:

Sendi Mohammad S. E.,Cole Eric R.,Piallat Brigitte,Ellis Charles A.ORCID,Eggers Thomas E.,Laxpati Nealen G.,Mahmoudi Babak,Gutekunst Claire-Anne,Devergnas Annaelle,Mayberg Helen,Gross Robert E.,Calhoun Vince D.ORCID

Abstract

AbstractBrain stimulation holds promise for treating brain disorders, but personalizing therapy remains challenging. Effective treatment requires establishing a functional link between stimulation parameters and brain response, yet traditional methods like random sampling (RS) are inefficient and costly. To overcome this, we developed an active learning (AL) framework that identifies optimal relationships between stimulation parameters and brain response with fewer experiments. We validated this framework through three experiments: (1) in silico modeling with synthetic data from a Parkinson’s disease model, (2) in silico modeling with real data from a non-human primate, and (3) in vivo modeling with a real-time rat optogenetic stimulation experiment. In each experiment, we compared AL models to RS models, using various query strategies and stimulation parameters (amplitude, frequency, pulse width). AL models consistently outperformed RS models, achieving lower error on unseen test data in silico (p<0.0056,N=1,000) and in vivo (p=0.0036,N=20). This approach represents a significant advancement in brain stimulation, potentially improving both research and clinical applications by making them more efficient and effective. Our findings suggest that AL can substantially reduce the cost and time required for developing personalized brain stimulation therapies, paving the way for more effective and accessible treatments for brain disorders.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3