Altered cellular metabolic pathway and epithelial cell maturation induced by MYO5B defects are partially reversible by LPAR5 activation

Author:

Momoh Michael,Rathan-Kumar Sudiksha,Burman Andreanna,Brown Monica E,Adeniran Francisca,Ramos Cynthia,Goldenring James R,Roland Joseph T,Kaji IzumiORCID

Abstract

AbstractFunctional loss of the motor protein, Myosin Vb (MYO5B), induces various defects in intestinal epithelial function and causes a congenital diarrheal disorder, microvillus inclusion disease (MVID). Utilizing the MVID model mice,Vil1-CreERT2;Myo5bflox/flox(MYO5BΔIEC) andVil1-CreERT2;Myo5bflox/G519R(MYO5B(G519R)), we previously reported that functional MYO5B loss disrupts progenitor cell differentiation and enterocyte maturation that result in villus blunting and deadly malabsorption symptoms. In this study, we determined that both absence and a point mutation of MYO5B impair lipid metabolism and alter mitochondrial structure, which may underlie the progenitor cell malfunction observed in MVID intestine. Along with a decrease in fatty acid oxidation, the lipogenesis pathway was enhanced in the MYO5BΔIEC small intestine. Consistent with these observationsin vivo, RNA-sequencing of enteroids generated from two MVID mouse strains showed similar downregulation of energy metabolic enzymes, including mitochondrial oxidative phosphorylation genes. In our previous studies, lysophosphatidic acid (LPA) signaling ameliorates epithelial cell defects in MYO5BΔIEC tissues and enteroids. The present study demonstrates that the highly soluble LPAR5-preferred agonist, Compound-1, improved sodium transporter localization and absorptive function, and tuft cell differentiation in patient-modeled MVID animals that carry independent mutations in MYO5B. Body weight loss in male MYO5B(G519R) mice was ameliorated by Compound-1. These observations suggest that Compound-1 treatment has a trophic effect on intestine with MYO5B functional loss through epithelial cell-autonomous pathways that may improve the differentiation of progenitor cells and the maturation of enterocytes. Targeting LPAR5 may represent an effective therapeutic approach for treatment of MVID symptoms induced by different point mutations in MYO5B.NEW & NOTEWOTHYThis study demonstrates the importance of MYO5B for cellular lipid metabolism and mitochondria in intestinal epithelial cells, a previously unexplored function of MYO5B. Alterations in cellular metabolism may underlie the progenitor cell malfunction observed in microvillus inclusion disease (MVID). To examine the therapeutic potential of progenitor-targeted treatments, the effects of LPAR5-preferred agonist, Compound-1, was investigated utilizing several MVID model mice and enteroids. Our observations suggests that Compound-1 may provide a therapeutic approach for treating MVID.Graphic Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3