The differential effects of common and rare genetic variants on cognitive performance across development

Author:

Malawsky Daniel S.ORCID,Koko MahmoudORCID,Danacek PetrORCID,Huang Wei,Wootton OliviaORCID,Huang QinqinORCID,Wade Emma E.,Lindsay Sarah J.ORCID,Arden RosalindORCID,Hurles Matthew E.ORCID,Martin Hilary C.ORCID

Abstract

AbstractCommon and rare genetic variants that impact adult cognitive performance also contribute to risk of rare neurodevelopmental conditions involving cognitive deficits in children. However, their influence on cognitive performance across early life remains poorly understood. Here, we investigate the contribution of common genome-wide and rare exonic variation to cognitive performance across childhood and adolescence primarily using the Avon Longitudinal Study of Parents and Children (n=6,495 unrelated children). We show that the effect of common variants associated with educational attainment and cognitive performance increases as children age. Conversely, the negative effect of deleterious rare variants attenuates with age. Using trio analyses, we show that these age-related trends are driven by direct genetic effects on the individual who carries these variants. We further find that the increasing effects of common variants are stronger in individuals at the upper end of the phenotype distribution, whereas the attenuating effects of rare variants are stronger in those at the lower end. Concordant results were observed in the Millenium Cohort Study (5,920 children) and UK Biobank (101,232 adults). The effects of common and rare genetic variation on childhood cognitive performance are broadly comparable in magnitude to those of other factors such as parental educational attainment, maternal illness and preterm birth. The effects of maternal illness and preterm birth on childhood cognitive performance also attenuate with age, whereas the effect of parental educational attainment does not. Furthermore, we show that the relative contribution of these various factors differ depending on whether one considers their contribution to phenotypic variance across the entire population or to the risk of poor outcomes. Our findings may help explain the apparent incomplete penetrance of rare damaging variants associated with neurodevelopmental conditions. More generally, they also show the importance of studying dynamic genetic influences across the life course and their differential effects across the phenotype distribution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3