Abstract
Transposable elements (TEs) pose a threat to genome integrity, and the piRNA pathway in animal gonads plays a crucial role in silencing TE activity. While the transcriptional regulation of the piRNA pathway components in germ cells has been documented in mice and flies, the mechanisms orchestrating the transcriptional program of the somatic piRNA pathway in Drosophila ovaries remains unresolved. Here, we demonstrate that Traffic jam (Tj), an orthologue of a large Maf transcription factor in mammals, is a master regulator of the piRNA pathway in ovarian somatic cells, playing a crucial role in maintaining TE silencing and genomic integrity in somatic tissues. We show that Tj directly binds to the promoters of somatic-enriched piRNA factors such as fs(1)Yb, nxf2, panx, and armi, as well as the flamenco piRNA cluster, a major locus for TE silencing in somatic cells. Depletion of Tj in somatic follicle cells results in a significant downregulation of these piRNA factors, a complete loss of flam expression and de-repression of gypsy-family TEs, which have gained the ability to activate in ovarian somatic cells allowing them to infect germ cells and be transmitted to future generations. We have identified an enhancer carrying Tj binding motifs located downstream of the flam promoter that is essential for robust and tissue-specific flam expression in somatic follicle cells of the adult ovary. This work uncovers a previously unappreciated layer of transcriptional regulation of the piRNA pathway, and we propose that the arms race between the host and TEs has driven the evolution of promoters in piRNA genes and clusters to respond to a unique transcription factor thereby ensuring efficient silencing of gypsy-family TEs
Publisher
Cold Spring Harbor Laboratory