The African Swine Fever Virus gene MGF_360-4L inhibits interferon signaling by recruiting mitochondrial selective autophagy receptor SQSTM1 degrading MDA5 antagonizing innate immune responses

Author:

Sun Hualin,Yang JifeiORCID,Zhang Zhonghui,Wu Mengli,Tian ZhanchengORCID,Liu Ying,Zhang Xiaoqiang,Zhong Jianhao,Yang Songlin,Chen Yikang,Luo Jianxun,Guan Guiquan,Yin Hong,Niu QingliORCID

Abstract

ABSTRACTMultigene family (MGF) 360 genes, which are African swine fever virus (ASFV) virulence genes, primarily target key host immune molecules to suppress host interferon (IFN) production and interferon-stimulated gene (ISG) transcription, impairing host innate immune responses for efficient viral replication. However, the interactions between MGF 360 virulence genes and host molecules, as well as the mechanisms through which MGF 360 genes regulate host immune responses and interferon signaling, require further elucidation. In this study, we discovered that ASFV MGF_360-4L interacts with MDA5 and recruits the mitochondrial selective autophagy receptor SQSTM1 to degrade MDA5, thus impairing interferon signaling and compromising host innate immune responses. Furthermore, MGF_360-4L inhibits the interaction between MDA5 and MAVS, blocking ISG15-mediated ISGylation of MDA5. MGF_360-4L deficiency significantly attenuated virus-induced mitochondrial autophagyin vitro. Additionally, OAS1 ubiquitinates MGF_360-4L at residues K290, K295 and K327. Finally, a recombinant ASFV lacking the MGF_360-4L gene (ASFV-ΔMGF_360-4L) was generated using ASFV-CN/SC/2019 as the backbone, which demonstrated that the replication kinetics of ASFV-ΔMGF_360-4L in PAM cells were like those of the highly virulent parental ASFV-WTin vitro. Domestic pigs infected with ASFV-ΔMGF_360-4L exhibited milder symptoms than those infected with parental ASFV-WT, and ASFV-ΔMGF_360-4L-infected pigs presented with enhanced host innate antiviral immune response, confirming that the deletion of the MGF_360-4L gene from the ASFV genome highly attenuated virulence in pigs and provided effective protection against parental ASFV challenge. In conclusion, we identified a novel ASFV virulence gene, MGF_360-4L, further elucidating ASFV infection mechanisms and providing a new candidate for vaccine development.IMPORTANCEAfrican swine fever virus (ASFV) infection causes acute death in pigs, and there is currently no effective vaccine available for prevention. Multigene family (MGF) virulence genes have been shown to be crucial for ASFV ability to evade host innate immune responses. However, the functions of most MGF genes remain unknown, which poses significant challenges for the development of ASFV vaccines and antiviral drugs. In this study, we identified a virulence gene of ASFV, MGF_360-4L, that targets and recruits the selective autophagy receptor p62 to mediate the degradation of the dsRNA sensor MDA5, thereby blocking interferon signaling. Additionally, it inhibits the ISG15-mediated ISGylation activation of MDA5. ASFV lacking MGF_360-4L showed reduced virulence and provided protection in pigs. Our data identify a novel virulence gene and provide new insights for ASFV vaccine development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3