Gene Age Gap Estimate (GAGE) for major depressive disorder: a penalized biological age model using gene expression

Author:

Li Yijie (Jamie),Kuplicki Rayus,Ford Bart N.,Kresock Elizabeth,Figueroa-Hall Leandre,Savitz Jonathan,McKinney Brett A.ORCID

Abstract

AbstractRecent associations between Major Depressive Disorder (MDD) and measures of premature aging suggest accelerated biological aging as a potential biomarker for MDD susceptibility or MDD as a risk factor for age-related diseases. Statistical and machine learning regression models of biological age have been trained on various sources of high dimensional data to predict chronological age. Residuals or “gaps” between the predicted biological age and chronological age have been used for statistical inference, such as testing whether an increased age gap is associated with a given disease state. Recently, a gene expression-based model of biological age showed a higher age gap for individuals with MDD compared to healthy controls (HC). In the current study, we propose a machine learning approach that simplifies gene selection by using a least absolute shrinkage and selection operator (LASSO) penalty to construct an expression-based Gene Age Gap Estimate (GAGE) model. We construct the LASSO-GAGE (L-GAGE) model in an RNA-Seq study of 78 unmedicated individuals with MDD and 79 HC and then test for accelerated biological aging in MDD. When testing L-GAGE association with MDD, we account for factors such as sex and chronological age to mitigate regression to the mean effects. The L-GAGE shows higher biological aging in MDD subjects than HC, but the elevation is not statistically significant. However, when we dichotomize chronological age, the interaction between MDD status and age is significant in L-GAGE model. This effect remains statistically significant even after adjusting for chronological age and sex. We find cytomegalovirus (CMV) serostatus is associated with elevated L-GAGE. We also investigate feature selection methods Random Forest and nearest neighbor projected distance regression (NPDR) to characterize age related genes, and we find functional enrichment of infectious disease and SARS-COV pathways.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3