Allosteric modulation of proton binding confers Cl-activation and glutamate selectivity to vesicular glutamate transporters

Author:

Borghans BartORCID,Kortzak DanielORCID,Longo PiersilvioORCID,Machtens Jan-PhilippORCID,Fahlke ChristophORCID

Abstract

Vesicular glutamate transporters (VGLUTs) fill synaptic vesicles with glutamate and remove luminal Cl-via an additional anion channel mode. Both of these transport functions are stimulated by luminal acidification, luminal-positive membrane potential, and luminal Cl-. We studied VGLUT1 transporter/channel activation using a combination of heterologous expression, cellular electrophysiology, fast solution exchange, and mathematical modeling. Cl-channel gating can be described with a kinetic scheme that includes two protonation sites and distinct opening, closing, and Cl--binding rates for each protonation state. Cl-binding promotes channel opening by modifying the pKa values of the protonation sites and rates of pore opening and closure. VGLUT1 transports glutamate and aspartate at distinct stoichiometries: H+-glutamate exchange at 1:1 stoichiometry and aspartate uniport. Neurotransmitter transport with variable stoichiometry can be described with an alternating access model that assumes that transporters without substrate translocate in the doubly protonated state to the inward-facing conformation and return with the bound amino acid substrate as either singly or doubly protonated. Glutamate, but not aspartate, promotes the release of one proton from inward-facing VGLUT1, resulting in preferential H+-coupled glutamate exchange. Cl-stimulates glutamate transport by making the glutamate-binding site accessible to cytoplasmic glutamate and by facilitating transitions to the inward-facing conformation after outward substrate release. We conclude that allosteric modification of transporter protonation by Cl-is crucial for both VGLUT1 transport functions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3