BayesQuantify: an R package utilized to refine the ACMG/AMP criteria according to the Bayesian framework

Author:

Liu Sihan,Feng Xiaoshu,Bu FengxiaoORCID

Abstract

AbstractImproving the precision and accuracy of variant classification in clinical genetic testing involves further specification and stratification of the ACMG/AMP criteria. The Bayesian framework proposed by ClinGen has provided a mathematical foundation for evidence refinement, successfully quantifying, and extending the evidence strengths of PS1, PS4, PM5, and PP3/BP4. However, existing software and tools designed for quantifying the evidence strength and establishing corresponding thresholds to refine the ACMG/AMP criteria are lacking. To address this gap, we have developedBayesQuantify, an R package that aims to provide users with a unified resource for quantifying the strength of evidence for ACMG/AMP criteria using a naive Bayes classifier. By analyzing publicly available data, we demonstrateBayesQuantify’s capability to offer objective and consistent refinement of the ACMG/AMP evidence. BayesQuantify is available from GitHub athttps://github.com/liusihan/BayesQuantify.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3