Why Symptoms Linger in Quiescent Crohn’s Disease: Investigating the Impact of Sulfidogenic Microbes and Sulfur Metabolic Pathways

Author:

Golob Jonathan,Rao Krishna,Berinstein Jeffrey A.,Singh Prashant,Chey William D.,Owyang Chung,Kamada Nobuhiko,Higgins Peter D.R.,Young Vincent,Bishu ShrinivasORCID,Lee Allen A.ORCID

Abstract

AbstractIntroductionEven in the absence of inflammation, persistent symptoms in patients with Crohn’s disease (CD) are prevalent and worsen quality of life. We previously demonstrated enrichment in sulfidogenic microbes in quiescent Crohn’s disease patients with (qCD+S) vs. without persistent GI symptoms (qCD-S). Thus, we hypothesized that sulfur metabolic pathways would be enriched in stool while differentially abundant microbes would be associated with important sulfur-metabolic pathways in qCD+S.MethodsWe performed a multi-center observational study nested within SPARC IBD. Quiescent inflammation was defined by fecal calprotectin level <150 mcg/g. Persistent symptoms were defined by CD-PRO2. Active CD (aCD) and non-IBD diarrhea-predominant irritable bowel syndrome (IBS-D) were included as controls.ResultsThirty-nine patients with qCD+S, 274 qCD-S, 21 aCD, and 40 IBS-D underwent paired shotgun metagenomic sequencing and untargeted metabolomic profiling. The fecal metabolome in qCD+S was significantly different relative to qCD-S and IBS-D but not aCD. Patients with qCD+S were enriched in sulfur-containing amino acid pathways, including cysteine and methionine, as well as serine, glycine, and threonine. Glutathione and nicotinate/nicotinamide pathways were also enriched in qCD+S relative to qCD-S, suggestive of mitochondrial dysfunction, a downstream target of H2S signaling. Multi-omic integration demonstrated that enriched microbes in qCD+S were associated with important sulfur-metabolic pathways. Bacterial sulfur-metabolic genes, includingCTH,isfD,sarD, andasrC, were dysregulated in qCD+S. Finally, sulfur metabolites with and without sulfidogenic microbes showed good accuracy in predicting presence of qCD+S.DiscussionMicrobial-derived sulfur pathways and downstream mitochondrial function are perturbed in qCD+S, which implicate H2S signaling in the pathogenesis of this condition. Future studies will determine whether targeting H2S pathways results in improved quality of life in qCD+S.Key MessagesWhat is Already KnownEven in the absence of inflammation, persistent gastrointestinal symptoms are common in Crohn’s disease.The microbiome is altered in quiescent Crohn’s disease patients with persistent symptoms, but the functional significance of these changes is unknown.What is New HereSulfur metabolites and sulfur metabolic pathways were enriched in stool in quiescent Crohn’s disease patients with persistent symptoms.Multi-omic integration showed enriched microbes were associated with important sulfur metabolic pathways in quiescent Crohn’s disease patients with persistent symptoms.How Can This Study Help Patient CareStrategies to decrease sulfidogenic microbes and associated sulfur metabolic pathways could represent a novel strategy to improve quality of life in quiescent Crohn’s disease with persistent GI symptoms

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3