Decoding pattern formation rules by integrating mechanistic modeling and deep learning

Author:

Lu JiaORCID,Luo Nan,Liu Sizhe,Sahu Kinshuk,Maddamsetti Rohan,Baig Yasa,You Lingchong

Abstract

AbstractPredictive programming of self-organized pattern formation using living cells is challenging in major part due to the difficulty in navigating through the high-dimensional design space effectively. The emergence and characteristics of patterns are highly sensitive to both system and environmental parameters. Often, the optimal conditions able to generate patterns represent a small fraction of the possible design space. Furthermore, the experimental generation and quantification of patterns is typically labor intensive and low throughput, making it impractical to optimize pattern formation solely based on trials and errors. To this end, simulations using a well-formulated mechanistic model can facilitate the identification of optimal experimental conditions for pattern formation. However, even a moderately complex system can make these simulations computationally prohibitive when applied to a large parameter space. In this study, we demonstrate how integrating mechanistic modeling with machine learning can significantly accelerate the exploration of design space for patterning circuits and aid in deriving human-interpretable design rules. We apply this strategy to program self-organized ring patterns inPseudomonas aeruginosausing a synthetic gene circuit. Our approach involved training a neural network with simulated data to predict pattern formation 10 million times faster than the mechanistic model. This neural network was then used to predict pattern formation across a vast array of parameter combinations, far exceeding the size of the training dataset and what was computationally feasible using the mechanistic model alone. By doing so, we identified many parameter combinations able to generate desirable patterns, which still represent an extremely small fraction of explored parametric space. We next used the mechanistic model to validate top candidates and identify coarse-grained rules for patterning. We experimentally demonstrated the generation and control of patterning guided by the learned rules. Our work highlights the effectiveness in integrating mechanistic modeling and machine learning for rational engineering of complex dynamics in living cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3