Enhanced CRISPR/Cas-Based Immunoassay through Magnetic Proximity Extension and Detection

Author:

Shao Fangchi,Hu Jiumei,Zhang Pengfei,Akarapipad Patarajarin,Park Joon Soo,Lei Hanran,Hsieh Kuangwen,Wang Tza-Huei

Abstract

AbstractClustered regularly interspaced short palindromic repeats (CRISPR)/Cas-associated systems have recently emerged as a focal point for developing next-generation molecular diagnosis, particularly for nucleic acid detection. However, the detection of proteins is equally critical across diverse applications in biology, medicine, and the food industry, especially for diagnosing and prognosing diseases like cancer, Alzheimer’s and cardiovascular conditions. Despite recent efforts to adapt CRISPR/Cas systems for protein detection with immunoassays, these methods typically achieved sensitivity only in the femtomolar to picomolar range, underscoring the need for enhanced detection capabilities. To address this, we developed CRISPR-AMPED, an innovative CRISPR/Cas-based immunoassay enhanced by magnetic proximity extension and detection. This approach combines proximity extension assay (PEA) with magnetic beads that converts protein into DNA barcodes for quantification with effective washing steps to minimize non-specific binding and hybridization, therefore reducing background noise and increasing detection sensitivity. The resulting DNA barcodes are then detected through isothermal nucleic acid amplification testing (NAAT) using recombinase polymerase amplification (RPA) coupled with the CRISPR/Cas12a system, replacing the traditional PCR. This integration eliminates the need for thermocycling and bulky equipment, reduces amplification time, and provides simultaneous target and signal amplification, thereby significantly boosting detection sensitivity. CRISPR-AMPED achieves attomolar level sensitivity, surpassing ELISA by over three orders of magnitude and outperforming existing CRISPR/Cas-based detection systems. Additionally, our smartphone-based detection device demonstrates potential for point-of-care applications, and the digital format extends dynamic range and enhances quantitation precision. We believe CRISPR-AMPED represents a significant advancement in the field of protein detection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3