Impact of vaccination on SARS-CoV-2 transmission in the UK: a modelling study

Author:

Derqui NievesORCID,Mishra SwapnilORCID,Hinsley Wes RORCID,Bhatt SamirORCID,Laydon Daniel JORCID

Abstract

AbstractBackgroundEfficacy and effectiveness of vaccines against SARS-CoV-2 infection, severe disease and death have been widely assessed. However, the impact of vaccination against SARS-CoV-2 transmission is far less well-characterized, and has major implications for public health, because it informs the indirect effects of vaccination in addition to its direct effects. Analysing the effects of SARS-CoV-2 vaccination on transmission is challenging, because they must be considered in tandem with the time-varying reproduction number (Rt), while also accounting for regional variability, for example due to the presence of more transmissible variants.MethodsWe fitted a Bayesian hierarchical model to previously obtained estimates ofRtto estimate the effectiveness of vaccination with one, two and three doses on SARS-CoV-2 transmission in the UK during 2021. Vaccine effectiveness is defined as the proportional reduction in the time-varying reproduction numberRt. The model accounts for transmission at national and Lower Tier Local Authority (LTLA)-level, and uses vaccination data provided by the UK Health Security Agency (UKHSA), detailing the LTLA-specific proportions of people who have received doses one, two and three. The model also incorporates data on the proportion of wild-type, Alpha and Delta SARS-CoV-2 variants over time in each LTLA, obtained from UKHSA and the COVID-19 Genomics UK (COG-UK) Consortium.ResultsWe find that vaccination had moderate-to-large effectiveness against transmission for dose 1 (39.30%, 95% CrI 26.64% - 48.07%), and for dose 3 (48.69%, 95% CrI 27.97% - 71.30%), but negligible effects on dose 2, likely attributable to the coincident importation and dominance of the Delta variant in the UK. Nationally, our model fitted the previously estimated values of time-series ofRtvalues well, largely reproducing the reproduction number averaged across LTLAs for each timepoint. This lends support to our hypothesis that the extent of vaccination (or lack thereof) was a major determinant of transmission intensity. Our model fits further reproduced well the reproduction numbers at regional level, although outliers were less well captured, implying some degree of variation that is not explained by our model.ConclusionsTo our knowledge, our analysis is the first evidence of the effectiveness of SARS-CoV-2 vaccination against its transmission at population level. We find that vaccination is an effective tool for the control of SARS-CoV-2 transmission, in addition to its well-documented effects on disease burden and mortality. Our results allow future assessment of the impact of vaccination accounting for several circulating variants and sociodemographic factors.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. GOV.UK. Coronavirus (COVID-19) in the UK. [cited 2021 23/12/2021]; Available from: https://coronavirus.data.gov.uk/.

2. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine

3. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine

4. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil;South Africa, and the UK. The Lancet,2021

5. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data;The Lancet,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3