Uncertainty quantification in epigenetic clocks via conformalized quantile regression

Author:

Li Yanping,Goodrich Jaclyn M.,Peterson Karen E,Song Peter X-K,Luo Lan

Abstract

AbstractDNA methylation (DNAm) is a chemical modification of DNA that can be influenced by various factors, including age, environment, and lifestyle. An epigenetic clock is a predictive tool that measures biological age based on DNAm levels. It can provide insights into an individual’s biological age, which may differ from their chronological age. This difference, known as the epigenetic age acceleration, may indicate the state of one’s health and risk for age-related diseases. Moreover, epigenetic clocks are used in studies of aging to assess the effectiveness of anti-aging interventions and to understand the underlying mechanisms of aging and disease. Various epigenetic clocks have been developed using samples from different populations, tissues, and cell types, typically by training high-dimensional linear regression models with an elastic net penalty. While these models can predict mean biological age with high precision, there is a lack of uncertainty quantification which is important for interpreting the precision of age estimations and for clinical decision-making. To understand the distribution of a biological age clock beyond its mean, we propose a general pipeline for training epigenetic clocks, based on an integration of high-dimensional quantile regression and conformal prediction, to effectively reveal population heterogeneity and construct prediction intervals. Our approach produces adaptive prediction intervals not only achieving nominal coverage but also accounting for the inherent variability across individuals. By using the data collected from 728 blood samples in 11 DNAm datasets from children, we find that our quantile regression-based prediction intervals are narrower than those derived from conventional mean regression-based epigenetic clocks. This observation demonstrates an improved statistical efficiency over the existing pipeline for training epigenetic clocks. In addition, the resulting intervals have a synchronized varying pattern to age acceleration, effectively revealing cellular evolutionary heterogeneity in age patterns in different developmental stages during individual childhoods and adolescent cohort. Our findings suggest that conformalized high-dimensional quantile regression can produce valid prediction intervals and uncover underlying population heterogeneity. Although our methodology focuses on the distribution of aging in children, it is applicable to a broader range of populations to improve understanding of epigenetic age beyond the mean. This inference-based toolbox could provide valuable insights for future applications of epigenetic interventions for age-related diseases.

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. Biogeography of the ecosystems of the healthy human body

2. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates

3. An epigenetic biomarker of aging for lifespan and healthspan;Aging (albany NY),2018

4. DNA methylation GrimAge strongly predicts lifespan and healthspan;Aging (albany NY),2019

5. DNA methylation profile is a quantitative measure of biological aging in children;Aging (Albany NY),2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3