Allosteric modulation of the Lon protease by effector binding and local charges

Author:

Ogdahl Justyne L,Chien Peter

Abstract

AbstractThe ATPase Associated with diverse cellular Activities (AAA+) family of proteases play crucial roles in cellular proteolysis and stress responses. Like other AAA+ proteases, the Lon protease is known to be allosterically regulated by nucleotide and substrate binding. Although it was originally classified as a DNA binding protein, the impact of DNA binding on Lon activity is unclear. In this study, we characterize the regulation of Lon by single-stranded DNA (ssDNA) binding and serendipitously identify general activation strategies for Lon. Upon binding to ssDNA, Lon’s ATP hydrolysis rate increases due to improved nucleotide binding, leading to enhanced degradation of protein substrates, including physiologically important targets. We demonstrate that mutations in basic residues that are crucial for Lon’s DNA binding not only reduces ssDNA binding but result in charge-specific consequences on Lon activity. Introducing negative charge at these sites induces activation akin to that induced by ssDNA binding, whereas neutralizing the charge reduces Lon’s activity. Based on single molecule measurements we find that this change in activity is correlated with changes in Lon oligomerization. Our study provides insights into the complex regulation of the Lon protease driven by electrostatic contributions from either DNA binding or mutations.HighlightsssDNA binding allosterically activates Lon ATP hydrolysisNegative charge at DNA binding site is sufficient for Lon activationNeutralization of charge at DNA binding site inhibits Lon ATP hydrolysisLon activity is linked to formation of stable Lon hexamersSignificanceThe energy-dependent protease Lon is integral in both eukaryotic and prokaryotic physiology, contributing to protein quality control, stress management, developmental regulation, and pathogenicity. The ability to precisely regulate protein levels through targeted degradation underscores a need for tunability. We find that single-stranded DNA (ssDNA) acts as an allosteric regulator of Lon, leading to enhanced enzymatic activity. Mutations in basic residues crucial for DNA binding were found to affect Lon activity in a charge-specific manner highlighting the importance of electrostatic interactions regulating Lon’s function. Changes in Lon activity due to ssDNA binding or mutations were correlated with its oligomerization state. Our findings provide insights into the activation strategies of Lon, emphasizing the role of electrostatic contribution that modulate nucleotide affinity, oligomerization and proteolysis to advance our understanding of the complex regulatory mechanisms of the Lon protease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3