Single cell genome and epigenome co-profiling reveals hardwiring and plasticity in breast cancer

Author:

Wang Kaile,Yan Yun,Elgamal Heba,Li Jianzhuo,Tang Chenling,Bai Shanshan,Xiao Zhenna,Sei Emi,Lin Yiyun,Wang Junke,Montalvan Jessica,Nagi Changandeep,Thompson Alastair M.,Navin Nicholas

Abstract

AbstractUnderstanding the impact of genetic alterations on epigenomic phenotypes during breast cancer progression is challenging with unimodal measurements. Here, we report wellDA-seq, the first high-genomic resolution, high-throughput method that can simultaneously measure the whole genome and chromatin accessibility profiles of thousands of single cells. Using wellDA-seq, we profiled 22,123 single cells from 2 normal and 9 tumors breast tissues. By directly mapping the epigenomic phenotypes to genetic lineages across cancer subclones, we found evidence of both genetic hardwiring and epigenetic plasticity. In 6 estrogen-receptor positive breast cancers, we directly identified the ancestral cancer cells, and found that their epithelial cell-of-origin was Luminal Hormone Responsive cells. We also identified cell types with copy number aberrations (CNA) in normal breast tissues and discovered non-epithelial cell types in the microenvironment with CNAs in breast cancers. These data provide insights into the complex relationship between genetic alterations and epigenomic phenotypes during breast tumor evolution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3