Sub-3 Å resolution protein structure determination by single-particle cryo-EM at 100 keV

Author:

Karia DimpleORCID,Koh Adrian F.ORCID,Yang Wen,Cushing Victoria I.ORCID,Basanta BenjaminORCID,Mihaylov Daniel B.ORCID,Khavnekar SagarORCID,Vyroubal Ondřej,Malínský Miloš,Sháněl Ondřej,Doležal Vojtěch,Plitzko Juergen M.ORCID,Yu LingboORCID,Lander Gabriel C.ORCID,Aricescu A. RaduORCID,Greber Basil J.ORCID,Kotecha AbhayORCID

Abstract

Cryo-electron microscopy (cryo-EM) has revolutionized structural biology by providing high-resolution insights into biological macromolecules. Here, we present sub-3 Å resolution structures determined using the 100 keV Tundra cryogenic transmission electron microscope (cryo-TEM), equipped with the newly developed Falcon C direct electron detector (DED). Our results demonstrate that this lower voltage microscope, when combined with advanced electron optics and detectors, can achieve high-resolution reconstructions that were previously only attainable with higher voltage systems. The implementation of an extreme-brightness field emission gun (XFEG) and an SP-TWIN objective lens significantly enhanced the spatial and temporal coherence of the system. Furthermore, the semi-automated sample loader minimized contamination and drift, allowing extended data collection sessions without manual intervention. The high detective quantum efficiency (DQE) of Falcon C further improved the signal-to-noise ratio, which is critical for achieving high-resolution structures. We validated the performance of this microscope by determining the structures of various biological samples, including apoferritin, T20S proteasome, GABAAreceptor, haemoglobin, and human transthyretin ranging in size from 440 kDa to 50 kDa. The highest resolutions achieved were 2.1 Å for apoferritin, 2.7 Å for the 20S proteasome, 2.8 Å for the GABAA receptor, 5.0 Å for haemoglobin, and 3.5 Å for transthyretin. We also explored a larger specimen, a 3.9 MDa Adeno-associated virus (AAV9) capsid and resolved it a 2.8 Å. This work highlights the potential of 100 keV TEMs to make high-resolution cryo-EM more accessible to the structural biology community. Furthermore, it sets a precedent for the use of lower voltage TEMs in routine cryo-EM studies, not only for screening grids for single particle analysis but also for achieving high-resolution structures of protein samples.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3