Neural-symbolic hybrid model for myosin complex in cardiac ventriculum decodes structural bases for inheritable heart disease from its genetic encoding

Author:

Burghardt Thomas P.ORCID

Abstract

ABSTRACTBackgroundHuman ventriculum myosin (βmys) powers contraction sometimes in complex with myosin binding protein C (MYBPC3). The latter regulates βmys activity and impacts overall cardiac function. Nonsynonymous single nucleotide variants (SNVs) change protein sequence in βmys or MYBPC3 causing inheritable heart diseases by affecting the βmys/MYBPC3 complex. Muscle genetics encode instructions for contraction informing native protein construction, functional integration, and inheritable disease impairment. A digital model decodes these instructions and evolves by continuously processing new information content from diverse data modalities in partnership with the human agent.MethodsA general neural-network contraction model characterizes SNV impacts on human health. It rationalizes phenotype and pathogenicity assignment given the SNVs genetic characteristics and in this sense decodes βmys/MYBPC3 complex genetics and implicitly captures ventricular muscle functionality. When a SNV modified domain locates to an inter-protein contact in βmys/MYBPC3 it affects complex coordination. Domains involved, one in βmys and the other in MYBPC3, form coordinated domains (co-domains). Co-domains are bilateral implying potential for their SNV modification probabilities to respond jointly to a common perturbation to reveal their location. Human genetic diversity from the serial founder effect is the common systemic perturbation coupling co-domains that are mapped by a methodology called 2-dimensional correlation genetics (2D-CG).ResultsInterpreting the general neural-network contraction model output involves 2D-CG co-domain mapping that provides natural language expressed structural insights. It aligns machine-learned intelligence from the neural network model with human provided structural insight from the 2D-CG map, and other data from the literature, to form a neural-symbolic hybrid model integrating genetic and protein interaction data into a nascent digital twin. This process is the template for combining new information content from diverse data modalities into a digital model that can evolve. The nascent digital twin interprets SNV implications to discover disease mechanism, can evaluate potential remedies for efficacy, and does so without animal models.HighlightsNeural-symbolic hybrid model decodes muscle genetics into contraction mechanisms And evolves in virtuous cycleOptimize-Interpret-Revise-Repeataided by human partner Nascent digital twin unravels inheritable disease mechanism without animal models And estimates cardiac phenotype coupling strength to myosin thick-filament structures

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3