Author:
Bell Miriam,Bartol Tom,Sejnowski Terrence,Rangamani Padmini
Abstract
AbstractDendritic spines are small subcompartments that protrude from the dendrites of neurons and are important for signaling activity and synaptic communication. These subcompartments have been characterized to have different shapes. While it is known that these shapes are associated with spine function, the specific nature of these shape-function relationships is not well understood. In this work, we systematically investigated the relationship between the shape and size of both the spine head and spine apparatus, a specialized endoplasmic reticulum compartment in the spine head, in modulating rapid calcium dynamics using mathematical modeling. We developed a spatial multi-compartment reaction-diffusion model of calcium dynamics in three dimensions with various flux sources including N-methyl-D-aspartate receptors (NMDAR), voltage sensitive calcium channels (VSCC), and different ion pumps on the plasma membrane. Using this model, we make several important predictions – first, the volume-to-surface area ratio of the spine regulates calcium dynamics, second, membrane fluxes impact calcium dynamics temporally and spatially in a nonlinear fashion, and finally the spine apparatus can act as a physical buffer for calcium by acting as a sink and rescaling the calcium concentration. These predictions set the stage for future experimental investigations of calcium dynamics in dendritic spines.
Publisher
Cold Spring Harbor Laboratory