Oncogenic addiction to high 26S proteasome levels

Author:

Tsvetkov Peter,Adler Julia,Myers Nadav,Biran Assaf,Reuven Nina,Shaul Yosef

Abstract

AbstractProteasomes are large intracellular complexes responsible for the degradation of cellular proteins. The altered protein homeostasis of cancer cells results in increased dependency on proteasome function. There are several different proteasome complexes that may be assembled in cells, with the 20S catalytic core common to them all. 20S proteasomes can function in isolation, or as part of larger complexes (26S) with regulatory particles (RP) such as the 19S that is needed for the targeting and processing of ubiquitinated substrates. Proteasome inhibitors target the catalytic barrel (20S) and thus this inhibition does not allow the deconvolution of the distinct roles of 20S vs. 26S proteasomes in cancer progression. We examined the degree of dependency of cancer cells specifically to the level of the 26S proteasome complex. We found that oncogenic transformation of human and mouse immortalized cells with mutant Ras induced a strong increase in the translation of the 26S proteasome subunits, giving rise to high 26S complex levels. We show that depletion of a single subunit of the 19S RP was sufficient to significantly reduce the 26S proteasome level and lower the cellular 26S/20S ratio. We further demonstrate that the accumulated 26S proteasome was essential for the viability of the transformed cells. Moreover, the viability of 20 different cancer cell lines, but not normal human fibroblasts, was severely compromised upon specific 26S proteasome suppression regardless of their p53 status. Suppression of 26S activated the UPR and Caspase-3, which at least partially explains the cell-killing effect. Morphologically, suppression of the 26S proteasome resulted in cytoplasm shrinkage and nuclear deformation. Thus, the tumor cell-specific addiction to high 26S proteasome levels sets the stage for future strategies in cancer therapy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3