Gal4 activation domain 9aaTAD could be inactivated by adjacent mini-inhibitory domain and reactivated by distal re-activation domain

Author:

Piskacek Martin,Havelka Marek,Rezacova Martina,Knight Andrea

Abstract

AbstractThe characterisation of the activation domains started three decades ago with Gcn4 and Gal4 activators. The amorphous character of the activation domains strongly hindered their definition. Moreover, during the attempts to localise the Gal4 activation domain, the artificial peptides, an unintended consequence of cloning, were responsible for artificial transcriptional activity of the several Gal4 constructs. These artefacts produced enormous experimental bias and misconception. The presence of inhibitory domains in some Gal4 constructs made the misperception even worse. Previously, we reported that the nine amino acid transactivation domain, 9aaTAD, is the exclusive activation domain in the Gal4 protein. The activation domain 9aaTAD could be identified in Gal4 paralogs Oaf1, Pip2, Pdr1, Pdr3 and other activators p53, E2A and MLL. Surprisingly, the activation domain 9aaTAD was reported as misconception for Gal4 activator. Here we demonstrated that small region of 10 amino acids adjacent to the Gal4 activation domain 9aaTAD is an inhibitory domain, which the authors included in their constructs. Moreover, we identified Gal4 region, which was able to the reverse the inhibitory effect. The 9aaTAD re-activation domain was localized to the 13 amino acid long region. In this report we clarified the numerous confusions and rebutted supposed 9aaTAD misconception.SummaryThe activation domain 9aaTAD has decisive function in Gal4 activation. Gal4 activation domain 9aaTAD could be inhibited by adjacent region of 10 amino acids. The inhibited Gal4 activation domain 9aaTAD could be reactivated by 13 amino acid long Gal4 region. The activation domains 9aaTAD could be identified by our 9aaTAD prediction algorithm, especially in the Gal4 family.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3