Diffusion Histology Imaging to Improve Lesion Detection and Classification in Multiple Sclerosis

Author:

Ye Zezhong,George Ajit,Wu Anthony T.,Niu Xuan,Lin Joshua,Adusumilli Gautam,Cross Anne H.,Sun Peng,Song Sheng-Kwei

Abstract

AbstractBackgroundDiagnosing MS through magnetic resonance imaging (MRI) requires extensive clinical experience and tedious work. Furthermore, MRI-indicated MS lesion locations rarely align with the patients’ symptoms and often contradict with pathology studies. Our lab has developed and modified a novel diffusion basis spectrum imaging (DBSI) technique to address the shortcomings of MRI-based MS diagnoses. Although primary DBSI metrics have been demonstrated to be associated with axonal injury/loss, demyelination and inflammation, a more detailed analysis using multiple DBSI-structural metrics to improve the accuracy of MS lesion detection and differentiation is still needed. Here we report that Diffusion Histology Imaging (DHI), an improved approach that combines a deep neural network (DNN) algorithm with improved DBSI analyses, accurately detected and classified various MS lesion types.MethodsThirty-eight multiple sclerosis patients were scanned with T2-weighted imaging (T2WI) using fluid attenuated inversion recovery (FLAIR), T1-weighted imaging (T1WI) using magnetization-prepared rapid acquisition with gradient echo (MPRAGE), magnetization transfer contrast (MTR) imaging and diffusion-weighted imaging. The imaging results identified 43,261 voxels from 91 persistent black hole (PBH) lesions, 89 persistent gray hole (PGH) lesions, 16 acute gray hole (AGH) lesions, 189 non-black hole (NBH) lesions and 113 normal-appearing white matter (NAWM) areas. Data extracted from these lesions were randomly split into training, validation, and testing groups with an 8:1:1 ratio. The DNN was constructed with 10 fully-connected hidden layers using TensorFlow 2.0 in Python. Batch normalization and dropout regularization were used for model optimization.ResultsEach MS lesion type had unique DBSI derived diffusion metric profiles. Based on these DBSI diffusion metric profiles, DHI achieved a 93.6% overall concordance with neurologist determinations of all five MS lesions, compared with 74.3% from conventional MRI (cMRI)-DNN model, 78.2% from MTR-DNN model, and 80% from DTI-DNN model. DHI also achieved greater performances on detecting individual MS lesion types compared to other models. Specifically, DHI showed great performances on prediction of PBH (AUC: 0.991; F1-score: 0.923), PGH (AUC: 0.977; F1-score: 0.823) and AGH (AUC: 0.987; F1-score: 0.887), which significantly outperformed other models.ConclusionsDHI significantly improves the detection and classification accuracy for various MS lesion types, which could greatly aid the clinical decisions of neurologists and neuroradiologists. The efficacy and efficiency of this DNN model shows great promise for clinical application.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3