Thalamocortical network connectivity controls spatiotemporal dynamics of cortical and thalamic traveling waves

Author:

Bhattacharya SayakORCID,Le Cauchois Matthieu B.ORCID,Iglesias Pablo A.ORCID,Chen Zhe S.ORCID

Abstract

AbstractPropagation of neural activity in spatially structured neuronal networks has been observed in awake, anesthetized and sleeping brains. However, it remains unclear how traveling waves are coordinated temporally across recurrently connected brain structures, and how network connectivity affects spatiotemporal neural activity. Here we develop a computational model of a two-dimensional thalamocortical network that enables us to investigate traveling wave characteristics in space-time. We show that thalamocortical and intracortical network connectivity, excitation/inhibition balance, thalamocortical/corticothalamic delay can independently or jointly change the spatiotemporal patterns (radial, planar and rotating waves) and characteristics (speed, direction and frequency) of cortical and thalamic traveling waves. Simulations of our model further predict that increased thalamic inhibition induces slower cortical wave frequency, and enhanced cortical excitation increases cortical wave speed and oscillation frequencies. Overall, the model study provides not only theoretical insight into the basis for spatiotemporal wave patterns, but also experimental predictions that potentially control these dynamics.Author SummaryCognition or sensorimotor control requires the coordination of neural activity across widespread brain circuits. Propagating waves of oscillatory neural activities have been observed at both macroscopic and mesoscopic levels, with various frequencies, spatial coverage, and modalities. However, a complete understanding how thalamocortical traveling waves are originated and temporally coordinated in the thalamus and cortex are still unclear. Furthermore, it remains unknown how the network connectivity, excitation/inhibition balance, thalamocortical or corticothalamic delay determine the spatiotemporal wave patterns and characteristics of cortical and thalamic traveling waves. Here we develop a computational model of a two-dimensional thalamocortical network to investigate the thalamic and neocortical traveling wave characteristics in space-time, which allows us to quantitatively assess the impact of thalamocortical network properties on the formation and maintenance of complex traveling wave patterns. Our computational model provides strong theoretical insight into the basis of spatiotemporal wave propagation, as well as experimental predictions that control these wave dynamics.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3