Raoult’s law revisited: accurately predicting equilibrium relative humidity points for humidity control experiments

Author:

Bowler Michael G.,Bowler David R.ORCID,Bowler Matthew W.ORCID

Abstract

AbstractThe humidity surrounding a sample is an important variable in scientific experiments. Biological samples in particular require not just a humid atmosphere but often a relative humidity (RH) that is in equilibrium with a stabilizing solution required to maintain the sample in the same state during measurements. The controlled dehydration of macromolecular crystals can lead to significant increases in crystal order, which often leads to higher diffraction quality. Devices that can accurately control the humidity surrounding crystals on a beamline have led to this technique being increasingly adopted, as experiments become easier and more reproducible. Matching the relative humidity to the mother liquor is the first step to allow the stable mounting of a crystal. In previous work, we measured the equilibrium relative humidity for a range of concentrations of the most commonly used precipitants and showed how this related to Raoult’s law for the equilibrium vapour pressure of water above a solution. However, a discrepancy between measured values and those predicted by theory could not be explained. Here, we have used a more precise humidity control device to determine equilibrium relative humidity points. The new results are in agreement with Raoult’s law. We also present a simple argument in statistical mechanics demonstrating that the saturated vapour pressure of a solvent is proportional to its mole fraction in an ideal solution: Raoult’s Law. The same argument can be extended to the case where solvent and solute molecules are of different size, as is the case with polymers. The results provide a framework for the correct maintenance of the RH surrounding samples.SynopsisThe equilibrium relative humidity values for a number of the most commonly used precipitants in biological macromolecule crystallisation have been measured using a new humidity control device. A simple argument in statistical mechanics demonstrates that the saturated vapour pressure of a solvent is proportional to its mole fraction in an ideal solution (Raoult’s Law). The same argument can be extended to the case where solvent and solute molecules are of different size.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3