Inherited chromosomally integrated human herpesvirus 6 genomes are ancient, intact and potentially able to reactivate from telomeres

Author:

Zhang Enjie,Bell Adam J,Wilkie Gavin S,Suárez Nicolás M,Batini ChiaraORCID,Veal Colin D,Armendáriz-Castillo Isaac,Neumann Rita,Cotton Victoria E,Huang Yan,Porteous David J,Jarrett Ruth F,Davison Andrew J,Royle Nicola JORCID

Abstract

ABSTRACTHuman herpesviruses 6A and 6B (HHV6-A and HHV-6B; speciesHuman herpesvirus 6AandHuman herpesvirus 6B) have the capacity to integrate into telomeres, the essential capping structures of chromosomes that play roles in cancer and ageing. About 1% of people worldwide are carriers of chromosomally integrated HHV-6 (ciHHV-6), which is inherited as a genetic trait. Understanding the consequences of integration for the evolution of the viral genome, for the telomere and for the risk of disease associated with carrier status is hampered by a lack of knowledge about ciHHV-6 genomes. Here, we report an analysis of 28 ciHHV-6 genomes and show that they are significantly divergent from the few modern non-integrated HHV-6 strains for which complete sequences are currently available. In addition ciHHV-6B genomes in Europeans are more closely related to each other than to ciHHV-6B genomes from China and Pakistan, suggesting regional variation of the trait. Remarkably, at least one group of European ciHHV-6B carriers has inherited the same ciHHV-6B genome, integrated in the same telomere allele, from a common ancestor estimated to have existed 24,500 ±10,600 years ago. Despite the antiquity of some, and possibly most, germline HHV-6 integrations, the majority of ciHHV-6B (95%) and ciHHV-6A (72%) genomes contain a full set of intact viral genes and therefore appear to have the capacity for viral gene expression and full reactivation.IMPORTANCEInheritance of HHV-6A or HHV-6B integrated into a telomere occurs at a low frequency in most populations studied to date but its characteristics are poorly understood. However, stratification of ciHHV-6 carriers in modern populations due to common ancestry is an important consideration for genome-wide association studies that aim to identify disease risks for these people. Here we present full sequence analysis of 28 ciHHV-6 genomes and show that ciHHV-6B in many carriers with European ancestry most likely originated from ancient integration events in a small number of ancestors. We propose that ancient ancestral origins for ciHHV-6A and ciHHV-6B are also likely in other populations. Moreover, despite their antiquity, all of the ciHHV-6 genomes appear to retain the capacity to express viral genes and most are predicted to be capable of full viral reactivation. These discoveries represent potentially important considerations in immune-compromised patients, in particular in organ transplantation and in stem cell therapy.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3