Gentle, fast and effective crystal soaking by acoustic dispensing

Author:

Collins Patrick MORCID,Tsing Ng Jia,Talon Romain,Nekrosiute Karolina,Krojer Tobias,Douangamath Alice,Brandao-Neto Jose,Wright Nathan,Pearce Nicholas M,von Delft Frank

Abstract

SynopsisA high-throughput method is described for crystal soaking using acoustic droplet ejection, and its effectiveness demonstrated. AbstractBright light sources, agile robotics, and fast detectors are continually reducing the time it takes to perform an X-ray diffraction experiment, making high throughput experiments more feasible than ever. But this is also pushing the upstream bottleneck towards sample preparation, even for robust and well characterised crystal systems. Crystal soaking is routinely used to generate protein-ligand complex structures, yet protein crystals are often sensitive to changes in solvent composition, and frequently require gentle or careful stepwise soaking techniques, limiting overall throughput. Here, we describe the use of acoustic droplet ejection for soaking of protein crystals with small molecules, and show that it is both gentle on crystals and allows very high throughput, with 1000 unique soaks easily performed in under 10 minutes. In addition to having very low compound consumption (tens of nanolitres per sample), the positional precision of acoustic droplet ejection enables targeted placement of the compound/solvent away from crystals and towards drop edges, allowing for gradual diffusion of solvent across the drop. This ensures both an improvement in reproducibility of X-ray diffraction and an increased solvent tolerance of the crystals, thus enabling higher effective compound soaking concentrations. We detail the technique here with examples from the protein target JMJD2D, a histone lysine demethylase, having roles in cancer and the focus of active structure based drug design efforts.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3