Mechanics of snake biting: Experiments and modelling

Author:

Kundanati LakshminathORCID,Guarino Roberto,Menegon MicheleORCID,Pugno Nicola M.ORCID

Abstract

AbstractAmong all the vertebrates, snakes possess the most sophisticated venom delivering system using their fangs. Fangs of many animals are well adapted to the mechanical loads experienced during the functions such as breaking the diet and puncturing the skin of the prey. Thus, investigation and modelling of puncturing mechanics of snakes is of importance to understand the form-function relationship of the fangs and tissue-fang interactions in detail. We have thus chosen fangs of two snake species i.e. viper (Bitis arietans) and burrowing snake (Atractaspis aterrima), with different shape and size and performed insertion experiments using tissue phantoms. Our results showed that both the species have similar mechanical properties but there was a difference in the insertion forces owing to the difference in shape of the fang. Also, our modelling of the fang-tissue interactions predicted some parameters close to the experimental values. Thus, our study can help in the development of bioinspired needles that can potentially have reduced insertion forces and less damage to the tissue.

Publisher

Cold Spring Harbor Laboratory

Reference19 articles.

1. Abràmoff, M. D. and Magalhães, P. J. (2004). Image Processing with ImageJ. Biophotonics Int.

2. Viper fangs: functional limitations of extreme teeth;Physiol. Biochem. Zool.,2015

3. Determination of Elastic Modulus of Gelatin Gels by Indentation Experiments;Procedia Mater. Sci.,2015

4. How tubular venom-conducting fangs are formed;J. Morphol.,2002

5. The evolution of venom-delivery systems in snakes;Zool. J. Linn. Soc.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3