Estimations of the weather effects on brain functions using functional MRI: a cautionary note

Author:

Di XinORCID,Wolfer Marie,Kühn Simone,Zhang Zhiguo,Biswal Bharat B.

Abstract

AbstractThe influences of environmental factors such as weather on the human brain are still largely unknown. A few neuroimaging studies have demonstrated seasonal effects, but were limited by their cross-sectional design or sample sizes. Most importantly, the stability of the MRI scanner hasn’t been taken into account, which may also be affected by environments. In the current study, we analyzed longitudinal resting-state functional MRI (fMRI) data from eight individuals, where the participants were scanned over months to years. We applied machine learning regression to use different resting-state parameters, including the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and functional connectivity matrix, to predict different weather and environmental parameters. For careful control, the raw EPI and the anatomical images were also used for predictions. We first found that daylight length and air temperatures could be reliably predicted with cross-validation using the resting-state parameters. However, similar prediction accuracies could also be achieved by using one frame of EPI image, and even higher accuracies could be achieved by using segmented or raw anatomical images. Finally, the signals outside of the brain in the anatomical images and signals in phantom scans could also achieve higher prediction accuracies, suggesting that the predictability may be due to the baseline signals of the MRI scanner. After all, we did not identify detectable influences of weather on brain functions other than the influences on the baseline signals of MRI scanners. The results highlight the difficulty of studying long-term effects using MRI.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3