Abstract
ABSTRACTReconstruction of transcriptional regulatory networks (TRNs) is a powerful approach to unravel the gene expression programs involved in healthy and disease states of a cell. However, these networks are usually reconstructed independent of the phenotypic properties of the samples and therefore cannot identify regulatory mechanisms that are related to a phenotypic outcome of interest. In this study, we developed a new method called InPheRNo to identify ‘phenotype-relevant’ transcriptional regulatory networks. This method is based on a probabilistic graphical model whose conditional probability distributions model the simultaneous effects of multiple transcription factors (TFs) on their target genes as well as the statistical relationship between target gene expression and phenotype. Extensive comparison of InPheRNo with related approaches using primary tumor samples of 18 cancer types from The Cancer Genome Atlas revealed that InPheRNo can accurately reconstruct cancer type-relevant TRNs and identify cancer driver TFs. In addition, survival analysis revealed that the activity level of TFs with many target genes could distinguish patients with good prognosis from those with poor prognosis.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献