Pervasive contingency and entrenchment in a billion years of Hsp90 evolution

Author:

Starr Tyler N.,Flynn Julia M.,Mishra Parul,Bolon Daniel N. A.,Thornton Joseph W.

Abstract

AbstractInteractions among mutations within a protein have the potential to make molecular evolution contingent and irreversible, but the extent to which epistasis actually shaped historical evolutionary trajectories is unclear. We addressed this question by identifying all amino acid substitutions that occurred during the billion-year evolutionary history of the heat shock protein 90 (Hsp90) ATPase domain beginning from a deep eukaryotic ancestor to modern Saccharomyces cerevisiae and then precisely measuring their fitness effects when introduced into both extant and reconstructed ancestral Hsp90 proteins. We find a pervasive influence of epistasis: of 98 derived states that evolved during history, most were deleterious at times before they happened, and the vast majority also became subsequently entrenched, with the ancestral state becoming deleterious after its substitution. This epistasis was primarily caused by specific interactions among sites rather than a general permissive or restrictive effect on the protein’s tolerance to mutation. Our results show that epistasis continually opens and closes windows of mutational opportunity over evolutionary timescales, producing histories and biological states that reflect the transient internal constraints imposed by a protein’s fleeting sequence states.Significance statementWhen mutations within a protein change each other’s functional effects—a phenomenon called epistasis—the trajectories available to evolution at any moment in time depend on the specific set of changes that previously occurred in the protein. The extent to which epistasis has shaped historical evolutionary trajectories is unknown. Using a high-precision bulk fitness assay and ancestral protein reconstruction, we measured the fitness effects in ancestral and extant sequences of all historical substitutions that occurred during the billion-year trajectory of an essential protein. We found that most historical substitutions were contingent on prior epistatic substitutions and/or entrenched by subsequent changes. These results establish that epistasis caused widespread, consequential shifts in the site-specific fitness constraints that shaped the protein’s historical trajectory.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3