Decoding locomotion from population neural activity in moving C. elegans

Author:

Hallinen Kelsey M.ORCID,Dempsey RossORCID,Scholz MonikaORCID,Yu XinweiORCID,Linder Ashley,Randi FrancescoORCID,Sharma AnujORCID,Shaevitz Joshua W.ORCID,Leifer Andrew M.ORCID

Abstract

AbstractThe activity of an animal’s brain contains information about that animal’s actions and movements. We investigated the neural representation of locomotion in the nematode C. elegans by recording population calcium activity during unrestrained movement. We report that a neural population more accurately decodes locomotion than any single neuron. Relevant signals are distributed across neurons with diverse tunings to locomotion. Two distinct subpopulations are informative for decoding velocity and body curvature, and different neurons’ activities contribute features relevant for different instances of behavioral motifs. We labeled neurons AVAL and AVAR and found their activity was highly correlated with one another. They exhibited expected transients during backward locomotion, although they were not always the most informative neurons for decoding velocity. Finally, we compared population neural activity during movement and immobilization. Immobilization alters the correlation structure of neural activity and its dynamics. Some neurons previously correlated with AVA become anti-correlated and vice versa.The activity of an animal’s brain contains information about that animal’s actions and movements. We investigated the neural representation of locomotion in the nematode C. elegans by recording brain-wide neural dynamics in freely moving animals. We report that a population of neurons more accurately decodes the animal’s locomotion than any single neuron. Neural signals are distributed across neurons in the population with a diversity of tuning to locomotion. Two distinct subpopulations are most informative for decoding velocity and body curvature, and different neurons’ activities contribute features relevant for different instances of behavioral motifs within these subpopulations. We additionally labeled the AVA neurons within our population recordings. AVAL and AVAR exhibit activity that is highly correlated with one another, and they exhibit the expected responses to locomotion, although we find that AVA is not always the most informative neuron for decoding velocity. Finally, we compared brain-wide neural activity during movement and immobilization and observe that immobilization alters the correlation structure of neural activity and its dynamics. Some neurons that were previously correlated with AVA become anti-correlated and vice versa during immobilization. We conclude that neural population codes are important for understanding neural dynamics of behavior in moving animals.

Publisher

Cold Spring Harbor Laboratory

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3