A general principle of dendritic constancy – a neuron’s size and shape invariant excitability

Author:

Cuntz HermannORCID,Bird Alexander DORCID,Beining MarcelORCID,Schneider Marius,Mediavilla LauraORCID,Hoffmann Felix ZORCID,Deller ThomasORCID,Jedlicka PeterORCID

Abstract

AbstractReducing neuronal size results in less cell membrane and therefore lower input conductance. Smaller neurons are thus more excitable as seen in their voltage responses to current injections in the soma. However, the impact of a neuron’s size and shape on its voltage responses to synaptic activation in dendrites is much less understood. Here we use analytical cable theory to predict voltage responses to distributed synaptic inputs and show that these are entirely independent of dendritic length. For a given synaptic density, a neuron’s response depends only on the average dendritic diameter and its intrinsic conductivity. These results remain true for the entire range of possible dendritic morphologies irrespective of any particular arborisation complexity. Also, spiking models result in morphology invariant numbers of action potentials that encode the percentage of active synapses. Interestingly, in contrast to spike rate, spike times do depend on dendrite morphology. In summary, a neuron’s excitability in response to synaptic inputs is not affected by total dendrite length. It rather provides a homeostatic input-output relation that specialised synapse distributions, local non-linearities in the dendrites and synaptic plasticity can modulate. Our work reveals a new fundamental principle of dendritic constancy that has consequences for the overall computation in neural circuits.In briefWe show that realistic neuron models essentially collapse to point neurons when stimulated by randomly distributed inputs instead of by single synapses or current injection in the soma.HighlightsA simple equation that predicts voltage in response to distributed synaptic inputs.Responses to distributed and clustered inputs are largely independent of dendritic length.Spike rates in various Hodgkin Huxley (HH) like or Leaky Integrate-and-Fire (LIF) models are largely independent of morphology.Precise spike timing (firing pattern) depends on dendritic morphology.NeuroMorpho.Org database-wide analysis of the relation between dendritic morphology and electrophysiology.Our equations set precise input-output relations in realistic dendrite models.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3